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ABSTRACT

Following the analysis of Schottky signals for the unbunched and
the bunched beam cases, a general study of electromagnetic
detectors is presented. Here the image-current approach and the
Lorentz reciprocity theorem will be used to evaluate the detector
(or pick-up) performance for several typical examples. Then,
signal-processing techniques, which play an important role in the
Schottky signal analysis, will be reviewed. The beam transfer
function which relates the beam response to an external excitation
also provides very useful information about the accelerator
behaviour. It requires an element to excite the beam (kicker)
which will be shown to be equivalent to a detector working in
reverse. With beam-transfer-function measurements an assessment
of beam stability limits can be made, leading to the determination
of the overall ring impedance.

The noise generated in an old fashioned electron tube is governed by the Schottky
formula which simply reflects the fact that the anode current is composed of individual
electrons randomly emitted by the cathode. Very similarly, the beam current in a circular
particle accelerator, also exhibits a random component, called the Schottky noise, which
results from the large, but finite, number of particles in the beam. In the absence of
random quantum emissions (i.e. for hadron machines) the analysis of Schottky noise signals
(or Schottky signals, for brevity) is a very powerful tool to study the accelerator
behaviour . Historically, Schottky signals have been observed first on unbunched beam
machines (CERN ISR),I’Z) leading to the development of the very successful stochastic
cooling technique. For bunched beams, the presence of strong "macroscopic"” beam signals

renders the observation of the tiny Schottky signals more difficult. However improved

signal processing techniques have recently made their observation possible.

Following the analysis of Schottky signals for the unbunched and the bunched beam
cases, a general study of electromagnetic detectors is presented. Here the image-current
approach and the Lorentz reciprocity theorem will be used to evaluate the detector (or
pick-up) performance for several typical examples. Then, signal-processing techniques,

which play an important role in the Schottky signal analysis, will be reviewed.

The beam transfer function which relates the beam response to an external excitation
also provides very useful information about the accelerator behaviour. It requires an
element to excite the beam (kicker) which will be shown to be equivalent to a detector
working in reverse. With beam-transfer-function measurements an assessment of beam

stability limits can be made, leading to the determination of the overall ring impedance.
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1 SCHOTTKY SIGNALS

1.1 Unbunched beam, longitudinal

For a single particle circulating in the machine (charge e, revolution period
T.1 = 1/fi)’ the beam current, at a given location in the ring, is composed of an infinite
train of delta pulses (Fig. la) separated in time by Ti' In frequency domain, this
periodic waveform is represented by a line spectrum (Fig. 1b), the distance between lines

being f. = w,/2_.
i i"w

v
1i(t) = efi 2: exp Jnmit . (1)
n=—o
Looking at positive frequencies only:
«©
i) = ef  + 2ef; 2: cos no. t . 2)
n=1

The first term represents the DC component, the others are simply the successive harmonics

of the revolution frequency.
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Fig. 1 a) Time domain & pulses b) Frequency domain: line spectrum

For N particles, randomly distributed in azimuth along the ring circumference
(debunched beam case) and having slightly different @y each line at frequency nfi which
is infinitely narrow in the case of a single particle, will be replaced by a band of

frequencies (Schottky band) whose width is simply:

- - sp
Af = n Afi =n fo n » , 3)

Afi is the spread in particle's revolution frequencies resulting from the relative
momentum spread Ap/p and the machine parameter n = (1/7: - 1/72). fo is the average

revolution frequency.
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When averaging equation (2) over N particles, only the DC terms remain (iDC = Nefo),
the other components cancel due to the random azimuth phase factor. However, the r.m.s.

current per band which is given by the sum:

<i?> = [2ef (cos ® +cos ® + ... +cos O, + ... + cos © 12 (4)
o 1 2 1 N

does not vanish because of the cos 02 terms. One obtains:

i = <i?s> = 2ef N<cos ©,>> (5)
rms v o V i
ims = Zefo -‘/ Py . (6)

The r.m.s. current per band (Schottky current) is independent of n (harmonic number)

and proportional to the square root of the number of particles N.

As indicated on Fig. 2, the power spectral density, proportional to <iz>/Af,
decreases with n until overlap occurs (Af>f°). For a given band the local power density
is obviously proportional to the number of particles per unit frequency. If the parameter
n is known (n may be frequency dependent), the measurement of the power spectral
density, in one particular Schottky band gives directly the Ap/p distribution of the
beam.

<i>

—

f

S

o

nf,

Fig. 2 Power spectral density of Schottky lines with increasing n.

This forms the basis of Ap/p beam distribution measurements in DC coasting

machines, (cooling and accumulation rings in particular).

Note that the noise signals pertaining to successive Schottky bands are not

correlated because the random azimuthal phase factor is multiplied by n in Eq. (4).

1.2 Unbunched beam, transverse

.

For a single particle, the beam current 1i(t) must be replaced by the dipole

moment : di(t) = ai(t). ii(t)’ where ai(t) is the transverse displacement. The '1th

particle executes a sinusoidal betatron oscillation, of amplitude a, which can be written:
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ai(t) = a, cos (qi ©y t + wi) (7)

Here 9 fi is the observed frequency, at a fixed location in the ring, 9 being the

non integer part of the betatron tune (Fig. 3a)

In frequency domain:

4o
di(t) =a; cos(qi w, t + wi) efO z: exp jnwit (8)
n=-o
d'(” ~
L di.
N /
\ {
L1 4 | - ] ]
ri| | \l L/ t 0 (neq) f
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Fig. 3 Time (a) and Frequency (b) domain representations of a single-
particle transverse oscillation

4o

d,(t) = a, ef R, Z exp JL(n +q) wt +@)1f - (9
n=-—o

The spectrum is again a series of lines spaced by the revolution frequency of the ith

particle, but shifted in freqency by 9, fi' Looking at positive frequencies only

(Fig. 3b) one obtains two betatron lines per revolution frequency band as in the case of

an amplitude-modulated carrier which exhibits two symmetrical sidebands.

For N particles in the beam, again randomly distributed in azimuth and in betatron

phases, averaging equation (9), for a given value of n + q, Bives:

<d> =0 5 <«d® =<a > e’ £° § (10)
o 2
N
-drms = efo a s 2 . (11)

Again, the total power per Schottky band is independent of its location in the
frequency spectrum; it is proportional to the number of particles in the beam and to the

square of the r.m.s. oscillation amplitude.
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Each Schottky band has now a finite width which results from the spread of revolution
frequencies Afi/fo = n Ap/p and from the spread of betatron frequencies Aqi. The latter
usually comes from the machine chromaticity §: Aqi = QEAp/p, but may also result from

space charge, beam-beam or nonlinear effects.

The line width of two adjacent Schottky bands (n + q) is given by:

Af = (n + q) Afi + wao Aq, (12)

Af =

°g

[(n +q)n+ QE] (13)

if only chromaticity contributes to the betatron frequency spread.

Equation (13) shows that the width of the two Schottky bands is not the same, due to
the machine chromaticity. However, by comparing the two bands n + q, one can determine
the Aqi of the beam. Even more, if one can identify similar points on the distribution

(resonances, for instance), their q can be determined by the formula:
1 <
q9=3 1+ (14)

Afc being the measured frequency difference between them. This technique was extensively
used in the ISR to monitor the working line of the machine distribution in transverse

tunes.
Comparing equations (10) and (6) gives a direct measure of the r.m.s. betatron

amplitude:

_ms _ ‘rms (15)

Equation (15) can be used to measure directly the transverse beam emittance, if the
beam distribution is known. This obviously requires well calibrated longitudinal and
transverse detectors to measure accurately drms and irms unless only relative measurements

are sought (evolution of AA transverse emittance, for instance).

1.3 Bunched beam, longitudinal

In the bunched beam case, every individual particle executes synchrotron oscillations
at the frequency QS/Zﬂ. The time of passage of the particle in front of the detector is

modulated according to:
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'ri(t) =7 sin (Qst + wi) (16)

1i(t) is the time difference with respect to the synchronous particle (frequency fo)
and Qi is the amplitude of the synchrotron oscillation, assumed to be linear. 1In time
domain, the beam current is represented in Fig. 4, as a series of delta pulses, with a

modulated time of passage. It can be written:

©
ii(t) = efo + 2ef° Re 2: exp jn wo(t Ty sin (Qst + wi)) . (17)

n=1

Gt
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Fig. 4 Time domain representation of a single particle current in a
bunched beam.

Using the relation:

Fry
exp (j (z sin 0)) = 2: 3,(2) oIPe (18)
p:—-co

where Jp is the Bessel function of order p, one can expand the nth harmonic in equation

(17) and obtain:

4
i = 2ef R Z: SNCIER ;) exp j(n ot + pR_t + pY;) . (19)

p:-m

Each revolution frequency line (nfo) now splits into an infinity of synchrotron
satellites, spaced by QS/Zw, the amplitudes of which being proportional to the Bessel

. ~ . .
functions of argument nw T, as shown in Fig. 5.

The amplitudes of the synchrotron satellites become negligible beyond a certain value
of p. This is because J_(x) = O for p > x if x is large. Therefore, the synchrotron

satellites are, in practice, confined into a limited bandwidth:

2pR = 2n o_ T,R . (20)
s o 1i's
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Fig. 5 Decomposition of each revolution line into synchrotron satellites

The spread in the instantaneous revolution frequency of the ith particle due to the

synchrotron oscillation is simply:

20w, = 2Q_ nw T, . (21)
i s o i

Consequently, for large values of n, the significant bandwidth around line n is the
same as that of a beam of many particles having the same Ami and therefore the same

Ap/p.

Consider now the case of many particles, with randomly distributed synchrotron phases

wi and ?i ranging from O to ?m (Z?m being the total bunch length).

For a given n, the central line (p = 0) shows the same phase factor (exp jnwot) for
all particles: the current in the central line is therefore proportional to N and not vN;
this is simply the macroscopic RF current of the bunch. On the contrary, the synchrotron
satellites (p#0) add r.m.s. wise because of the random phase factor

exp J(nmot + st + pwi) (Fig. 6).

Each line is infinitely narrow if the synchrotron oscillation is purely linear
(S‘zs is the same for all particles) and if the machine has no imperfections. However,
magnet and RF fluctuations broaden in practice each individual line. 1In addition a spread
in synchrotron frequency within the bunch AQS transforms each satellite (p#0) into a band
of width pAQs. For large values of n, overlap between successive synchrotron satellites
(pAQs> Qs) can occur within the significant width of the Schottky band of order n.
(Fig. 6b)

If we consider two Schottky bands with different values of n, their corresponding
synchrotron satellites (of order p) are correlated. This results from Eq. (19), where the

random phase factor pwi is the same, even for different values of n.

Another way to look at the coherence between successive Schottky bands is to examine

the bunch signal in time domain (Fig. 7). It is composed of a steady component
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Fig. 6 Longitudinal Schottky spectrum of a bunched beam.
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Fig. 7 Time domain of representation of bunched beam Schottky signal.

(macroscopic signal resulting from the terms: 2: Jo (nmo?i)) and a fluctuating Schottky
signal (2: J (nwo?i)). The fluctuating sig%al extends in time over Z?m, and can be
Fourier d%c%&%osed into components at multiples of the fundamental bunch frequency

fb = 1/z?m. All information concerning the Schottky signal is contained into those
components (in the limit Qs << wo). In other words significant information about the
Schottky signal only appears every fb frequency interval, the other spectral lines in

(19) (every fo) simply give redundant information, i.e., they are correlated.
As a consequence, sampling of Schottky signals at fo, which folds many nfo bands

on top of each other and only gives one Schottky signal, does not introduce any loss of

information, if the bandwidth before sampling is limited to # fb/2.

1.4 Bunched beam, transverse

Here we have to combine the amplitude modulation (betatron oscillation) and the time

modulation (synchrotron oscillation). One obtains:
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4o

d,(t) = a; cos(qu t + ;) ef R_ 2: exp jno (t + T, sin(Q_t+y,)) ) (22)

n=-o
s s th
If q; is independent of w5 the n sum becomes:

+o0

d = ef a R 2: T, (e ) exp JLUNEQI0 +PA ) t+PY;+o, ] . (23)

p:—&

Again, each betatron line splits into an infinite number of synchrotron satellites (Fig.
8). The significant bandwidth, as in the longitudinal case, approaches that of coasting
beams with the same Ap/p, for large values of n. On the contrary, for small values of

n, most of the energy is concentrated in the p = 0 line.

L | | | | ] |J°|J1|’2 ,

n W, §l (e,

Fig. 8 Decomposition of each betatron line into synchrotron satellites.

For a non-zero chromaticity, the argument of the Bessel function (n + q)wo't\i should
be replaced by [(n + q) - Q%/n] oni. In this case, the relative amplitudes of the
synchrotron satellites also depend on the chromaticity. In particular, for the chromatic

frequency:
w_ = Q w (24)

only the term JO is significant: all the energy of the nth Schottky band is concentrated

in the central line.

With many particles, we should average over the two random variables @ and
Wi' Unlike the longitudinal case, the central lines (p=0) add up r.m.s. wise due to
the random betatron phase factor ®; the consequence being that there is no transverse
macroscopic signal. Successive bands are correlated as in the longitudinal case, again,
because all the signal is concentrated in the time interval 2?m and not To = 1/fO as if

the beam were unbunched.

The width of the central line is determined by RF and magnetic field fluctuations,

but also by transverse nonlinearities (tune spread due to octupole fields, beam-beam or
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space charge forces). 1In addition, the synchrotron satellites are broadened by the spread

in synchrotron frequencies within the bunch (width pAQs as in Fig. 6).

The total power per band (for a given n) is given by:

2 2, 2 2 N 2 -
= = . 25
<dn> e fo <a®™> 5 Z:JP ((n+q) woti) (25)
P
With the identity:
4o
Z J3x) =1 (26)
P
p=—@
one obtains:
<«d >2 = e*f % <a’> ) . (27)
n o 2

The total power per band is the same as in the coasting beam case, for the same total

number of particles and the same transverse oscillation amplitude (Fig. 9).

RGERREL: 258%% ™ ShP%6TEE"NY

Fig. 9 Horizontal Schottky signals in the SPS.
Top: debunched beam
Bottom: bunched beam.

2 BEAM DETECTORS

2.1 The image-current approach

Consider the very simple geometry of Fig. 10a, where a round beam circulates in the
center of a cylindrical smooth vacuum chamber. This is a two-dimensional problem, and it

is well known that the electromagnetic fields are purely transverse, as in a coaxial line,
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C —= ip 0 beam
L N\, \j ,
1 LuI

Rq (load)
a) b)

Fig. 10 The beam is equivalent to a current source flowing into the
detector impedance.

in the limit v = c. It follows that for all frequencies the beam and wall currents are
opposite:

ijo=-i (28)

Equation (28) is only valid up to some upper frequency, depending on the particle
relativistic factor Yy and the transverse dimensions of the vacuum chamber. However, for

most practical cases (high energy storage rings) this is not a limitation.

If now we cut a gap in the circular wall we introduce a coupling between the inside
and the outside of the vacuum pipe. The latter is characterised by the impedance Z which
we can measure between the two sides of the gap. As the energy lost by the beam when
passing through the detector is much smaller than the particle's energy, the current ib’
and hence iw is independent of the gap voltage: it means that the wall current iw which

flows through Z can be represented by a pure current source (Fig. 10b).

The detector, which seen from the gap appears like an impedance Z, delivers its
output signal in the load Ro (Fig. 10a). The sensitivity of the detector (longitudinal

in this case) is defined by:

S=—"7T" (29)

For a lossless network between gap and Ro’ one can easily obtain, from power

considerations:
S = R .R 2
o' e

The following examples will illustrate the image current approach for the evaluation

of beam detectors (or beam pick-ups).
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a) The resistive-gap pick-up

In this case the load resistor Ro is simply connected to the vacuum chamber gap.
However, to provide a low impedance DC return path for the wall current, a short-circuited
coaxial line is built around the vacuum chamber, as shown on Fig. 11. The line is filled
with lossy material (ferrites) such that, for the operating frequency of the pick-up, it
appears as a terminated line. This introduces a low-pass characteristic in the detector

response.

e Deam

absorbing material at

high frequency ( ferrite)
Fig. 11 Resistive-gap pick-up

The upper frequency limit is determined by the parasitic capacitance at the gap.
Making Ro small (several parallel resistors) will push the upper frequency limit, at the

expense of sensitivity.

The SPS wide-band longitudinal detector3) uses eight parallel 50 Q strip lines
symmetrically connected to the gap, and a ferrite loaded coaxial line with 25 @
characteristic impedance. This arrangement gives Z = 5 Q. The eight gap signals are

combined in an eight port power combiner giving an overall sensitivity, in a 50 Q load:

instead of the maximum S = \’6.25 x 50 = 17.6 Q if no power would be lost in the

ferrites (very high impedance coaxial line).

The bandwidth extends form 4 MHz to 4 GHz with almost no resonances. To improve the
low-frequency response the inductance of the short circuited line can be increased by

lossless ferrites, but high-frequency resonances may be difficult to suppress.
b) The directional-coupler pick-up
As shown on Fig. 12a, there are two gaps in this detector, joined together by a piece

of coaxial line of characteristic impedance Ro’ surrounding the vacuum chamber. With

the two load resistors Ro which are connected to each gap, one can draw the equivalent
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The two beam current sources, at each gap, are in opposite

circuit of Fig. 12b.
direction, and are shifted in phase by the beam transit time.
of the contributions

The current flowing in the load Ro on the right is the sum

from the two current sources:
ib
5— exp (-jw / vw) left source
ib
-3 exp (-jw / vp) right source

vw and vp being the wave and beam velocities and % the distance between gaps

The total current:
(30)

|, w oo (i
2 Xp\ -3, - expi{-J,
(4 P
are equal.

vanishes if v_ and v
P ¢
a)

—-Lblz l
Lb?gg‘“zo %?_Lbup-jw_l_
. v
g

Fig. 12 Directional-coupler pick-up
a): schematics, b): equivalent circuit

For the load Ro on the left, one finds easily the current:
(31)

and the corresponding sensitivity:
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R

o .
S = 2 (1 - exp (-2jw v)) (32)

for vp = v¢ = v.

If this synchronous condition is fulfilled, for instance if vp = ¢ and the coaxial
line is in vacuum, this detector is directional: the signal only appears at the upstream
port (with respect to beam velocity). With counterrotating beams (p and pbars for
instance) the directional pick-up can separate the signals from the two types of
particles. 1In practice the directivity is of the order of 30 to 35 dB. Note that
directivity can, in principle, be obtained also by combining the signals of several

identical detectors.

The sensitivity of the detector, given by Eq. (32) is frequency dependent (Fig. 13).

It shows a succession of zeros and maxima corresponding to:

A 3
L = 2 A\, 2" zeros
L = A3k oM, maxima
T4 4 47
the sensitivity being simply RO at the maxima.
Im .
4 Amplitude
w
(A’:I£
/ 21
W= i
R f
e 0 l:k_ l:l_
4 2

Fig. 13 Transfer functions of the directional-coupler pick-up.

The transient response of the detector can be obtained by making the inverse Fourier
transform of Eq. (32), but it is obvious from the equivalent circuit of Fig. 12b that it
is composed of two opposite delta pulses separated in time by twice the transit time

(2%/c) (Fig. 1l4a).

Several identical pick-ups can be combined to increase the overall sensitivity. With
power combiners, the output signals are added power wise giving an overall sensitivity

S = Ro n for identical detectors, and the same frequency response. One can also



- 430 -

combine several directional coupler detectors in cascade and obtain, with the proper
delays, a transient response as in Fig. 14b. There the maximum sensitivity is
proportional to72, but the frequency response now shows a sin f/f curve peaked at

2 = AM/4. In other words, the higher sensitivity (proportional to?) results in a narrower

bandwidth.

2

R 2 2

l= A/L

Fig. 14 Transient response of directional coupler
a): single
b): multiple (with the associated frequency response).

Directional coupler pick-ups are in fact mostly used as transverse detectors. With
several strips symmetrically arranged in the vacuum chamber, as in Fig. 15a, the total
wall current iw should be replaced by iw 6/2n for each strip, provided the beam is in the
center. For a non-centered beam the problem is truly three dimensional near the gaps. By
approximating the electromagnetic field by that of a pure TEM wave one can obtain the wall
current distribution along the vacuum chamber azimuth which obviously depends on the beam
position. For small beam displacement, Ax, the difference of the signals of two

opposite strip lines is proportional to Ax:
AV =V, -V, =8, i, Ax (33)

SA being defined by equation (33) as the transverse sensitivity of the detector (in

ohms/meter) .

Zo

b)

Fig. 15 Cross section of transverse directional-coupler pick-up
a): circular
b): rectangular
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In the case of a rectangular geometry, often used in wide-aperture cooling rings for

instance, the sensitivity SA is given by:

s =2 (tann ™) . (34)

The form factor tanh(wsw/h) simply reflects the fact that some fraction of the wall

current flows outside the strip line gaps.

This type of pick-up (sometimes called loop coupler) is widely used in cooling
systems. It offers a good compromise between bandwidth (of the order of one octave) and
sensitivity. The signals of many couplers are often added power wise on a combiner board,
inside vacuum, to increase the overall sensitivity. If only one type of particle is
present, the downstream resistor Ro’ where no current flows, can be replaced by a short

circuit (hence the name of loop coupler), but microwave resonances may be harmful in this

case.

c) The electrostatic pick-up

If the coaxial line of Fig. 12a is much shorter than the wavelength (R<<\), it
can be represented by a simple capacitor C = Q/Rovo (Fig. 16a). For a very high load
resistor, the equivalent circuit of Fig. 16b represents the electrostatic detector, with

the two current sources phase shifted by wl/vb.

!

}} }} beam [ -Lbexp_jw\_ll

Out b

—
—
J

||
~ 1l

Fig. 16 The electrostatic pick-up

The voltage developed on the line (or the electrode) is simply:

1 . . .
vV = EE; [1b - i, exp (-jw !/vb)] (35)
b Lol
V=g J—-vb . (36)

The quantity Q,ib/vb is the beam charge q contained in the detector length, (assuming a
slowly varying charge distribution with respect to the electrode length). It follows:
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V = q/C (37)
as the electrostatic theory would have given immediately.

For v¢=vb and in the approximation of a high load resistor, Eq. (36) combined

with C = Q/Rovw leads to the very simple result:

The sensitivity is independent of the frequency and of the length of the detector. Of
course this is only true at medium frequencies. The non-infinite load resistor (usually
an amplifier with high input impedance) introduces a low frequency cut off whereas at high

frequencies the approximation <<\ is no longer valid.

The transverse version of the electrostatic pick-up can be obtained by splitting the
electrode cylinder in two halves along a linear cut. (Fig. 17). Electrostatic theory
shows that the difference in voltage between the two plates is a linear function of the
beam displacement. Many versions of the transverse electrostatic pick-up with various
shapes could be found in the literature (circular, rectangular, elliptical)b). They are
mostly used for closed orbit measurements (sometimes horizontal and vertical pick-ups are

combined in a single unit).

Fig. 17 Transverse electrostatic pick-up linearly cut

If the linearity requirement is less important, the linear cut could be abandoned,
for instance in the so called "buttons" to be used in LEP (Fig. 18). There, only the high-
frequency response is important, and consequently the load resistor is a 50 @ cable.

The linearity can be restored by a proper algorithm at the signal processing level.

The electrostatic detector can be made resonant, with a coil (or transformer)
connected to the electrode. A transverse version is sketched in Fig. 19a, with the

equivalent circuit of Fig. 19b.

At resonance the voltage across the plates V' is given by:

i (38)

' L o 28x
Ra 3

’b
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for a lossless transformer.
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Taking into account the ohmic losses of the coil (Qo = quality factor of the

resonant circuit, QL = loaded quality factor), one obtains:

R » Q Q

2 o L% L
s=-‘l———<1_——> : (40)

A d (o] vy Qo

This technique has been used in the CERN SPS, for a dedicated, very sensitive
Schottky detectorS)(sensitivity: 75Q/mm) .

2.2 Pick-up evaluation using the reciprocity theorem

The reciprocity theorem, well known in antenna theory, results from Maxwell equations
applied to a linear, isotropic system. If we have two sets of current sources in the
system J' and J'' which produce the electric fields E' and E'' and the magnetic fields H'

and H'', the following relation is valid:

/];s" xH -E xH ).nds =/f[(:~:'.J" ~E .3y av (41)

s v

N
where the volume v is enclosed by the surface s (n is the unity vector on that surface).

-> ->
For the application of the reciprocity theorem, (Fig. 20), we take J' = ib’

b
current source applied across the load resistor Ro)'

>
(i, is the beam current along the detector axis), and J'' = I1 (I1 is a pure

We consider an integration volume limited by the metallic enclosure of the pick-up,

where the electric fields are normal to the surface, which makes the left side of Eq. (41)

2> 2 dv = 21 4
Eb.I1 v = E . 1b v (42)
v v

Iz’vout i/~ Ez'lb dz (43)

vanish and leads to:

where Vou is the output voltage of the detector when excited by ib, and Ez is the on axis

t
component of the field in the pick-up structure when excited by Il. For a given geometry
and a given field configuration, Ez can be related to 11' from power considerations. Then
application of Eq. (43) directly gives the detector sensitivity S=vout/ib' for cases where

the image current approach would fail (e.g. microwave structures).
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Fig. 20 Application of the reciprocity theorem to a beam detector

Note that the reciprocity theorem , transposed in circuit theory, simply states that,

for a passive quadrupole, the determinant of its transfer matrix is unity.

Application of the reciprocity theorem will be illustrated in the following by two

examples: the slow-wave and the slot-line pick-ups.

The slow-wave pick-up is essentially an electromagnetic wave guide in which the phase
velocity has been slowed down to match the velocity of the particles. Dielectric slabs
(Fig. 21a) or corrugations (Fig. 21b) have been considered for this purposee). A
description of the field in the structure will be given by standard wave guide theory.
With respect to the transverse dimension, the Ez field configuration is either symmetrical
(even mode) or antisymmetrical (odd mode), leading to a longitudinal or a transverse

detector respectively.

Beam

,///' displacement

v

a) b)

Fig. 21 Slow-wave pick-ups a) dielectric slab
b) corrugated wall

In the case of a pure travelling-wave structure, terminated at both ends by resistors

Ro via matched transitions, the power flow Po in the waveguide is related to I1 by:



1 Y
P,=5 R,GD . (44)

Note that only 11/2 flows towards the waveguide, the rest being dissipated in the load

resistor Ro'

The sensitivity is given by:

/ Ezlb exp (Jkoz/Bp) dz = vaout . (45)

z

It is found to be proportional to the transit time factor:

. 1 1.2
sin ko(B B ) 2
P P
(46)
K (-1 %
o Bp Bw

ko’ B¢, Bp: propagation constants in free space, waveguide and beam respectively.

The sensitivity is optimum for Bp and Bw (synchronism condition) as expected. For a
given frequency, optimum dimensions of the waveguides are given by the synchronism
condition (as in Fig. 14b). Making the detector longer increases the sensitivity
(proportional to %) but reduces its bandwidth according to (46).

7,8) offers another interesting example, in which the waves

The slot-line pick-up
propagate in a direction perpendicular to that of the beam (Fig. 22). A thin slot in a
metallic plane on a dielectric substrate can support quasi TEM waves in the upper region.
The electric field, not too close to the slot, is purely tangential: its amplitude is

given by:

c (1)
_ £ 47
E¢ = V0 2 H1 (kcr) (47)
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Fig. 22 Schematics of slot-line pick-up
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with:
_ 2nj Az
kc =5 ({7) 1 (48)

’
V° is the voltage across the slot, A the wavelength along the slot and Hil) the

Hankel function of first order.

The longitudinal field Ez, along the beam (at a distance d from the metallic plane) is

simply:
d
Ez = . E¢ (49)
For A'~A (cr not too large) one can replace kcHil) (kcr) by 2j wr, which gives:
VO d
Es == (50)
LA o
Vo is related to the power flow Po along the gap by the slot-line impedance Z:
PO = VZ/ZZ. Combined with (44) and (45), one obtains:
R 2
o 14 2wz
S = > N cos dz (51)
mr
z
R Z
o 2nd
S = 5 exp (— “i—') . (52)

Equation (52) can be shown to be valid also even if A and \' are not very close:

A should then be replaced by A' in (52).

It is interesting to remark that in the limit d<<i, Eq. (52) reduces to
S = ROZ/Z which is the result given by the image current approach. With the

reciprocity theorem, transverse propagation which was previously neglected can be taken

into account.

If the signals of two symmetrical plates with two slots are combined, a transverse

detector can be built. Its sensitivity would be:

s—"E-"-E 1 (53)
=" Th

A sinh (vh/\' )

h being the distance between plates.
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Slot-line pick-ups would be interesting, because they can be easily produced by
standard printed-circuit techniques, even in the microwave region. Their bandwidth is
only limited by that of the slot-line to strip-line transitions (the wave on the slot is
coupled to outside via a strip line deposited on the opposite side of the dielectric).
Because of the transverse propagation, the inherent delay of the detector depends on the

transverse beam position. This could be useful for some stochastic cooling schemes.

2.3 Impulse response

Consider again a travelling wave detector like, for instance, the corrugated wall
waveguide, where a number of cells (or individual rectangular boxes) are coupled together
via the beam pipe. When excited by a short beam pulse, the response of the detector is,
in first approximation, an RF burst (Fig. 23) of amplitude Vout and duration 1. After
the time 1, all the energy deposited in the detector has been transported with the

group velocity vg to the end of the structure and then to the terminating resistor RO.

o | |

.

Fig. 23 Impulse response of a travelling-wave detector

What is the relation between the detector sensitivity S and its ouput voltage vout
in this case? If we assume a periodic train of short beam pulses (charge q), separated in
time by t, the RF component of the beam current ib at the central frequency of the pick-up

is simply ib = 2q/t. Obviously the ouput amplitude Vout is constant, with that particular

beam input, which gives:

Voup = S i, = 28a/t (54)

for the longitudinal case and:

vout = ZSA q Ax/7t (55)

for the transverse case.

The energy W deposited by the charge q in the detector is related to the geometry of

the structure via its "loss parameter" defined by:

W=kq® . (56)

The k factor is also the R/Q of the structure (k = % EN R/Q).



- 439 -

Combining (54), (56) and the relation:

\'J
1l _out
W = 2 R T (57)
o
valid for a lossless detector one finds:
RokT
S = 2 (58)

and a similar equation for the transverse case.

The loss parameter k depends essentially upon the cell geometry, and can be
calculated analytically in some simple cases (neglecting the effect of the beam hole) or
evaluated by computer codes like SUPERFISH for instance. On the other hand =t

characterizes the cell-to-cell coupling via vg'

From Eq. (58), the maximum sensitivity is again proportional to & (detector length)
as both k and v are themselves proportional to &. Of course the bandwidth decreases
correspondingly as was shown in the example of the multiple directional coupler (Fig.
14b). Note that this multiple directional coupler can be considered as a backward-

travelling wave structure with v = c.

In the following example, we shall evaluate the k factor for the simple geometry of
Fig. 24: a chain of coupled cylindrical cavities. We consider the mode Eo

(transverse detector) where the electric field is only longitudinal:

E =E_ = 0; Ez = Eo JI(Zﬂx/k) cos @ (59)

1 .0z
W=2q/Ezeprc dz . (60)

The factor 1/2 simply reflects the fact that the charge q only sees one half of its own
induced voltage (fundamental theorem of beam loading). W is also obtained by integrating

E: over the whole cavity volume:

1 2
sz///coEZ dv . (61)

Eliminating Eo between (59), (60) and (61) finally gives:
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coupling ( Vg & C)
N V.
g

Fig. 24 A chain of coupled cylindrical cavities as transverse detector

W= v_o Lo’ (g)’(sing«un 2 2 <2 (62)
= ar  2.38\1 L/ 1 :

Equation (62) shows the interest of high-frequency detectors as far as sensitivity is
concerned (factors w” and 1/2%). But the influence of the beam hole which has been
neglected in this simplified analysis will become more and more important. An example of
this type of detector, using the first transverse mode of the accelerating cavities in the

CERN SPS is given in Ref. 9.

3 OBSERVATION OF SCHOTTKY SIGNALS

3.1 Spectral analysis

As already mentioned in section 1 the measurement of the power spectral density of
the Schottky signals gives the particle distribution in either momentum or betatron tune
(or a combination of both). Therefore, spectral analysis is the natural technique for

observing Schottky signals.

The frequency span of interest is of the order of the revolution frequency, or even
less, (in most cases below 100 kHz). Consequently, the Fast Fourier Transform (FFT) or,
more precisely, the Digital Fourier Transform (DFT) techniques which operate at low
frequencies, can be used to evaluate in real time the signal spectrum. The Schottky band
to be analysed must be translated at low frequency prior to FFT analysis, as in a
conventional spectrum analyser. This may require a careful prefiltering to reject the

unwanted image frequencies.

In the DFT technique, the signal is sampled and digitized at frequency fs. Each
digital word is stored in a memory with M locations (typically 2*° = 1024 locations):
the duration of the signal sample to be analysed is then T = H/fs. The frequency
content (frequency span) of the sampled signal extends only up to fs/2 (Nyquist

theorem), and the resolution of the frequency analysis is of the order of 1/T (Fig. 25).
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Fig. 25 Spectral analysis (DFT) of Schottky signals

Depending on the choice of the signal processing "windowing", the resolution varies a
little: 1/T for the rectangular window; 1.4/T for the "Hamming window", better optimized

for noise signals.

For a given resolution of the beam distribution measurement (in Ap/p, or AQ/Q), T
is minimum for the largest width of the Schottky band. For instance, in the longitudinal,
debunched beam case, one would minimize T by looking at the highest frequency Schottky
bands (width nAf) limited by either fs/Z, the detector sensitivity, or the overlap
condition. This is of particular interest for the observation of "pseudo" Schottky
signals in pulsed machines to measure the beam momentum spread during debunching. (T is
there strictly limited by the duration of the magnetic cycle flat top). The beam
develops, during debunching at high intensity, a very complicated structure which is more
or less equivalent to random noise, but of macroscopic nature ("pseudo" Schottky signal).
Its spectrum analysis provides an estimate of the momentum spread of the beam during

debunching.

Even if T can be made very long, the result of the DFT on a noise signal does not
give a good estimate of its spectral density. This is because the variance of the power

measurement is comparable to its mean value: it does not decrease when T is made longer.

A better "estimation" of the true power density is obtained by averaging several
spectra taken at different time intervals. The "degree of confidence" of the measurement
increases with the number of averaged spectra (Fig. 26), at the expense of the total
analysis time (which may be distributed over several machine cycles in the the previous

example).
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Fig. 26 90% confidence level of the noise spectral density measurement
3.2 Parasitic signals of the Schottky spectrum

Due to the very low level of the Schottky signals, many sources of disturbance can

be harmful and should be eliminated whenever possible.

Parasitic signals may come from the beam itself; if there is a coherent excitation
(i.e. transverse) it will appear as a betatron signal, but with an amplitude proportional
to N and not +/W as for the Schottky signal. The longitudinal line in a transverse
Schottky scan can be suppressed by careful centering of the pick-up on the beam axis. In
5)

the bunched beam case, additional sharp filtering with a crystal filter is necessary

The line related components are reduced by a careful design of the amplifiers, power
supplies and earth connections. If this is not sufficient, narrow band synchronous

filtering (locked to the mains frequency) can also be employed.

Of more fundamental nature is the disturbance due to the thermal noise of the first
preamplifier, after the detector. The amplifier is characterised by its noise factor F
(excess noise with respect to a simple resistor Ro). The available noise spectral
density resulting from the amplifier and which is given by: FkotoRo, (koz Boltzmann
constant, tO: temperature) must be considerably smaller than the Schottky noise spectral

density. One possibility is to cool the preamplifier and the terminating resistors of the
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pick-ups (ACOL). From Fig. 2, it is clear that the best signal to noise ratio is obtained
at low frequencies (for the case of unbunched beams). Unfortunately, observation of
Schottky signals at high frequency is more favourable as far as sensitivity and analysis

time are concerned.

3.3 Bunched-beams signal processing

As all Schottky lines in a frequency interval fb are correlated (see section 1), it
is interesting to sample the beam signal at the revolution frequency. All lines will be
folded in the base band giving a much better signal to noise ratio as will be shown in the

following.

Consider the RF burst amplitude Vout of Fig. 23 delivered by a travelling wave
transverse pick-up, when excited by a short bunch. For a transverse r.m.s. beam
displacement x, the output voltage of the detector and the thermal noise voltage of the

amplifier, referred to the input, are respectively:

vrms = ZSAq x/t (63)

Vth = "FkotoRoB (64)

B being the amplifier bandwidth.

The power signal to noise ratio, during the time interval t is therefore:

2N e’sAz x>
= " . (65)
Ft k t R B
[o] [o] [o]

-

This is also the signal to noise ratio after sampling. We can select B (B = Bopt)

to optimize 1/U. Bopt is the minimum bandwidth for which the useful signal is not

reduced significantly. This happens if the rise time of the band limited RF burst is of
the order of its length: 1/B = 1, as illustrated in Fig. 27. More precisely BOpt is
that of the so called "optimum filter" (radar terminology) for which the impulse response

is the time reversed image of the RF burst. With that condition (65) becomes:

1 e’ £, sAz x>
=7 "Fk t R (66)
o o o o

Q=

which is the same as for the debunched beam case, except for the enhancement factor

1/1f° which can be much larger than unitylo).
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Fig. 27 Optimum filtering of an RF burst from a beam detector

The overall signal processing system for a bunched beam transverse Schottky signal is
displayed on Fig. 28. Frequency translation down to the base band frequency can be done
by peak detection, as indicated, or with a synchronous detector driven by the sum signal
of the pick-up. 1In this case, it is interesting to remark that the odd synchrotron
satellites are rejected for an in phase detection (like for a peak detection), whereas for
a quadrature detection, it is the even synchrotron satellites which are rejected. This

feature may be useful if one wants to isolate the central Jo line of the Schottky band.

A <
St/
Pu = - I ~
Preamp- Matched Detector Sample Low Pass
fiiter Hold filter

Fig. 28 Bunched beam signal processing system

Although the thermal noise of the preamplifier is of less importance for bunched beam
signal processing, the effect of spurious coherent excitation of the beam may be more of a
problem. This is because, even a low frequency excitation, near the first betatron line,
appears everywhere in the spectrum, contrary to the debunched beam case, and may spoil
even a high frequency Schottky system. A solution to that problem is to reject that part

of the detector signal which is coherent from one bunch to the nextg).
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4 BEAM TRANSFER FUNCTIONS

4.1 Principle of beam transfer functions

The name of beam transfer function almost speaks for itself: it relates the response
of the beam (amplitude and phase) to a known excitation. In the case of a transverse
excitation by a deflector (or kicker), the beam response is measured by a transverse
pick-up as indicated on Fig. 29a, whereas Fig. 29b shows the arrangement for the

measurement of a longitudinal transfer functionll).

Transverse Longitudinal
kicker Pu
N\Z' —1Cavity Py p—
N I
)
|F———————] r————————
‘
4 Network 1 {
* Analyser ’/,,——Network
excitation A Analyser
excitation
a) b)

Fig. 29 Principle of beam transfer function measurement

To minimize the analysis time and the disturbance to the beam, it is interesting to
excite the beam with a white noise spectrum (all frequencies are present in the band of
interest). There the output will also be a noise signal, similar to the Schottky noise,
and for which similar processing techniques can be applied. To extract the phase
information spectral density measurements are not sufficient and a dual channel DFT
instrument is needed. Again averaging many transfer functions reduces the variance of the
estimate (Fig. 26). In Fig. 29a and b, a new element appears, namely the kicker (either

transverse or longitudinal) which will be examined more in detail in the following.
4.2 Kickers .

A longitudinal kicker is a fairly straightforward device in which a longitudinal
electric field Ez is produced. The particle gains an energy AOW, when crossing the

kicker (or cavity), which is simply given by:

AW = [ e Ez dz . (67)
z

The application of the reciprocity theorem to a longitudinal beam detector has led us to

Eq. (43), which combined with (67) results in:

AW =e S I (68)
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showing that the energy gain of the kicker and the sensitivity of the pick-up are simply
proportional. In other words a longitudinal kicker is nothing but a longitudinal detector
working in reverse. This is almost obvious for cavity like detectors, but is also true
for a directional coupler type of pick-up for instance, where a quasi TEM wave

propagates. There, only the field at the ends of the coupler are useful for beam

excitation.

—_— z r4
/ U / dz
B,
g ’
y y

Fig. 30 Application of the induction law to the evaluation of the
transverse force

Consider now the case of a transverse deflection produced by the Lorentz force:

E; = e (E +vox 3) dz (69)

which projected on the x axis (Fig. 30) can be written:

= . . 70
Apx e (Ex + v By) dz (70)

To evaluate the quantity Ex + v.By. we apply the induction law to a small

rectangle in the x0z plane:

> )
T A 71
E.dg 5t ? (71)

C

¢B being the flux of the magnetic field B on the contour C. One obtains

dEz dEx

4 X = 3 72

ax dx dz + iz dz dx jw By dx dz (72)
dE dE
_‘£+_x=—'wB 73
dx dz J y (73)

With:



dE dEx dt 1
Fra el el R L) M e
it comes:
v dEz
Ex + v. By = 3; ax (75)

Equation (75) shows that only the longitudinal field Ez (more precisely dEz/dx)
is important for transverse deflection. This is a well known result (linac theory for
instance) which has a few interesting corollaries. For instance, one cannot deflect a
beam neither with a pure TEM wave nor with a pure H mode in a cavity if the end effects
are neglected. A transverse kicker must show a longitudinal electric field, in the same
way as a transverse pick-up extracts energy from the longitudinal velocity of the
particles. There is complete equivalence between pick-ups and kickers even in the

transverse plane. This will be illustrated in the following example.

The "TEM" travelling wave kicker has the same geometry as the transverse directional
coupler pick-up (Fig. 3la). The field is that of a TEM wave along the two lines, except
at the two ends where a longitudinal component Ez exists (Fig. 31b). Assume, for
simplicity vp:v : the particles receive successively two opposite transverse kicks at
either end of the kicker, the result being a zero deflection (another way of saying the
same thing is that the electric and magnetic deflections along the line exactly cancel
each other). On the contrary, for vp = —v‘P (beam in the opposite direction) the two kicks
add exactly if they are separated by half a period of the RF wave (L = A/4). This gives a
variation of the type sin 27 L/A. The kicker efficiency Kl is, from Eq. (75) proportional

to:

v dEz
Kl ~ e 3; E;_ sin 2w /2 (76)

]
B d

Fig. 31 “TEM" travelling wave kicker
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which can be written:
. 2w
sin™/—

e
= _ 77
1 h 2 2w an

for v = c.

The first term is proportional to the DC deflection (proportional to %) and the term in

brackets gives the form factor which is frequency dependent.

4.3 Debunched beam transfer function

The beam is composed of a collection of particles, each having its own oscillation
frequency Q950 submitted to a common driving force F(w). The equation of motion,

for each individual particle is, in linear approximation:
“ .
X, + (qiwi) x = F(w) (78)

with a forced solution of the form:

x.1 = Xi exp jot
(79)
F(w) 1 _F(w)
X. = =
i (4.0 )z_mz 2w wiqi—w
9393
The average beam response <Xi>/F(w) is given by the integral:
q
<Xi> 1 22 p(qiwi)
Flw) = 20 To.—w 9€3;95) (80)
ii
qlwl

where p(qiwi) is the normalized distribution of the betatron frequencies within the beam,

(qlw1 and 9,0, being the two extreme frequencies).

This is a singular integral because of the pole at qu; = o It can be decomposed

into its Cauchy principal value, which is real, and its residue at the pole (imaginary):

<X.>

) = %; [Princ. Value - jwp(w)] . (81)

We now replace <Xi> by jw<xi> to obtain a real transfer function B(w) when energy is

absorbed (force and displacement in quadrature) and obtain:
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B(w) = % (vp(w) + j Princ. Value) . (82)

The real part of the transfer function gives the particle distribution in tune like
the spectral power density of the Schottky signal. Outside the frequency band
(q1w1' qzwz) the real part of B(w) vanishes (pure imaginary response). The fact that a
collection of lossless oscillators responds like a damped resonator is the basis of Landau

damping and is illustrated in Fig. 32.

b Phase

]
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\ edge of

distribution
/

o

Fig. 32 Response of a large number of lossless resonators
- — - individual particles
average

The evaluation of the stability of the beam certainly corresponds to the most
interesting application of beam transfer function measurements. Collective effects (and
in particular beam instabilities) result from the presence of parasitic impedances in the
machine which generate a deflecting force (in the transverse case), when excited by a
collective displacement of the beam. In other words the excitation F(w) in Eq. (78)
should be combined with a term proportional to the beam response jw<xi>. This leads
to the well known feedback loop of Fig. 33, where H(jw) is linked to machine parameters

and is proportional to the impedance of the machine Z(w). For instance in the

transverse case:

ew i
o b

= ijmocv Z(w) (83)

H(jw)

m, is the rest mass of the particle.
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Fig. 33 Feedback loop due to the machine impedance

From Fig. 33 the new transfer function becomes:

jw<X, >
' _ i B(w)
B (0) = F - 1-B(w)H(w) (84
1 1 Hw . (85)

B (@) B(w)

.

By plotting the curve 1/B(w) for different beam intensities i, one obtains a
family of curves shifted in the complex plane by the quantity H(w) (Fig. 34). This
shift being proportional to Z(w), the machine impedance can be directly measured at any

frequencyll).

When the shifted 1/B(w) curve reaches the complex plane origin, stability of the
beam is lost (B{(w) - ®), this means that the distance of the curve to the origin is a
measure of beam stability. If a feedback system is employed to stabilize the beam, its
effect which should be to shift the curve towards the right side of the complex plane

could also be evaluated.
1]m

/8 (w)

Stability )
Limit

Fig. 34 Evaluation of the beam stability with transfer function
measurements
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With very sensitive detectors and provided long analysis times are available (DC
storage rings), beam transfer function is a very powerful technique, almost non-disturbing

to the beam; it can also be used in a similar way for the longitudinal plane.

4.4 Bunched-beam transfer function

The main difference with respect to the unbunched beam case is that an excitation of
the beam at a given frequency w, not only results in a beam response at w, but also at
all frequencies ne + . (This is because the bunched beam samples the w waveform
at the revolution frequency wo). The process is therefore fundamentally nonlinear,
and as a consequence, the beam transfer function is not defined in general, unless
additional conditions are imposedlz). For instance, if bunch to bunch coupling can be
neglected, one can define unambiguously the beam transfer function of a single bunch, for
a given mode of oscillation (dipole, quadrupole etc.), i.e. within an fb frequency
interval. Another interesting case is when the bunched beam behaves like an unbunched
beam: many equal bunches, frequency range from DC up to ERF/Z and negligible effects

beyond.

In the transverse plane, the measurement of the machine tune is nothing but a beam
transfer function measurement. Many descriptions of tune measurement systems exist in the
literature; excitation can be sinusoidal or random (band limited noise) near a betatron
line, or pulsed; beam measurement could be at the same or at different frequency. In
general the machine impedance Z(w) cannot be measured directly, as a function of
frequency; on the other hand if the shape of Z(w) is known (e.g. resistive wall) one can

determine its magnitude by measuring the tune shift as a function of beam intensity.

The RF system and its associated feedback loops strongly perturbs the longitudinal
transfer function of a bunched beam. This is particularly true for the dipole mode;
fortunately the quadrupole mode is easier to analyse and can provide meaningful
measurements of the machine impedance. Amplitude modulation of the RF waveform at around
twice the synchrotron frequency excites the quadrupole mode of a single bunch; the
quadrupole oscillation can be observed in a very simple way by peak detecting the bunch

signal from a wide band longitudinal detector.

The measured beam transfer function, at low intensity shows a sharp phase
discontinuity, at the bunch center, where the particle density is maximum, and a smooth
phase curve near the bunch edge (Fig. 35a). This corresponds to the 1/B(w) plot in
Fig.35b and provides a direct measurement of the center synchrotron frequency. At higher
intensities, the inductive wall effect shifts the 1/B(w) curve along the imaginary axis
(real frequency shift) and the phase curve of Fig. 35a shows a sharper transition. From
those measurements, the magnitude of Z(w)/n for the inductive wall case can be

determined over a frequency interval of the order of fb.
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Fig. 35 Quadrupole-mode transfer function (bunched beam)
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